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Abstract —In this work we propose a dynamic-texture-based approach to the recognition of facial Action Units (AUs, atomic facial
gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face
videos. Two approaches to modelling the dynamics and the appearance in the face region of an input video are compared: an extended
version of Motion History Images and a novel method based on Non-rigid Registration using Free-Form Deformations (FFDs). The
extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain.
Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models
detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of
all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the
proposed method achieved an average event recognition accuracy of 89.2% for the MHI method and of 94.3% for the FFD method.
The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the
performance on spontaneous expressions in the Sensitive Artificial Listener dataset.

Index Terms —facial image analysis, facial expression, dynamic texture, motion
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1 INTRODUCTION

A Widely accepted prediction is that computing will move
to the background, weaving itself into the fabric of

our everyday living and projecting the human user into the
foreground [1]. To realise this goal, next-generation computing
(a.k.a. pervasive computing, ambient intelligence, humancom-
puting) will need to develop human-centred user interfacesthat
respond readily to naturally occurring, multi-modal, human
communication [24]. These interfaces will need the capacity to
perceive and understand human users’ intentions and emotions
as communicated by social and affective signals. Motivated
by this vision of the future, automated analysis of non-verbal
behaviour, and especially of facial behaviour, has attracted in-
creasing attention in computer vision, pattern recognition, and
human-computer interaction. Facial expression is one of the
most cogent, naturally pre-eminent means for human beings
to communicate emotions, to clarify and stress what is said,to
signal comprehension, disagreement, and intentions, in brief,

• Sander Koelstra (sander.koelstra@elec.qmul.ac.uk) and Ioannis Patras
(i.patras@elec.qmul.ac.uk) are with Queen Mary University of London,
E14NS, UK.

• Maja Pantic (m.pantic@imperial.ac.uk) is with Imperial College London,
SW72AZ, UK, and with University of Twente, 7500 AE Enschede,NL.

• The authors would like to thank Jeffrey Cohn of the University of Pittsburgh
for providing the Cohn-Kanade database. The research of Sander Koelstra
has received funding from the Seventh Framework Programme under grant
agreement no. FP7-216444 (PetaMedia). This work has been funded first
in part by the ECs 7th Framework Programme [FP7 / 2007-2013] under
grant agreement no 211486 (SEMAINE). Current research of Maja Pantic
is funded by the European Research Council under the ERC Starting Grant
agreement no. ERC-2007-StG-203143 (MAHNOB). The researchof Ioannis
Patras has been partially supported by EPSRC Grant No EP/G033935/1.

to regulate interactions with the environment and other persons
in the vicinity [11]. Automatic analysis of facial expressions
forms, therefore, the essence of numerous next-generation-
computing tools including affective computing technologies
(i.e. proactive and affective user interfaces), learner-adaptive
tutoring systems, patient-profiled personal wellness technolo-
gies, etc. [21]. In general, since facial expressions can predict
the onset and remission of depression and schizophrenia,
certain brain lesions, transient myocardial ischemia, different
types of pain (acute vs. chronic), and can help identify alcohol
intoxication and deception, the potential benefits from efforts
to automate the analysis of facial expressions are varied and
numerous and span fields as diverse as cognitive sciences,
medicine, education, and security [21].

Two main streams in the current research on automatic
analysis of facial expressions consider facial affect (emotion)
detection and facial muscle action (action unit) detection[25,
21, 41]. The most commonly used facial expression descriptors
in facial affect detection approaches are the six basic emotions
(fear, sadness, happiness, anger, disgust, surprise), proposed by
Ekman and discrete emotion theorists, who suggest that these
emotions are universally displayed and recognized from facial
expressions. The most commonly used facial muscle action
descriptors are the Action Units (AUs) defined in the Facial
Action Coding System (FACS; [10]).

This categorization in terms of six basic emotions used in
facial affect detection approaches, though quite intuitive, has
some important downsides. The basic emotion categories form
only a subset of the total range of possible facial displays and
categorization of facial expressions can therefore be forced
and unnatural. Boredom and interest, for instance, do not seem

0646–2008/09/$25.00c© 2009 IEEE Published by the IEEE Computer Society



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMMM 2009 2

Fig. 1: Apex phases of 8 AUs of the FACS system.

to fit well in any of the basic emotion categories. Moreover,
in everyday life, these prototypic expressions occur relatively
rarely; usually, emotions are displayed by subtle changes in
discrete facial features, such as raising of the eyebrows in
surprise. To detect such subtlety of human emotions and, in
general, to convey the information on facial expressions to
aforementioned applications, automatic recognition of atomic
facial signals, such as the AUs of the FACS system, is needed.

FACS was proposed by Ekman and Friesen in 1978 and
revised in 2002 [10]. FACS classifies atomic facial signals into
Action Units (AUs) according to the facial muscles that cause
them. It defines 9 upper face AUs and 18 lower face AUs,
which are considered to be the smallest visually discernible
facial movements. It also defines 20 Action Descriptors for
eye and head position. FACS provides the rules both for AU
intensity scoring and for recognition of temporal segments
(onset, apex and offset) of AUs in a face video.

Most of the research on automatic AU recognition has been
based on analysis of static images (e.g. [26]) or individual
frames of an image sequence (e.g. [3, 4, 18, 17]). Some
research efforts toward using dynamic textures (DT) for facial
expression recognition (e.g. [36, 43]) and toward explicit
coding of AU dynamics (e.g. with respect to AUs temporal
segments, like in [23, 35], or with respect to temporal correla-
tion of different AUs like in [33]) have been proposed as well.
However, most of these previously proposed systems recognise
either the six basic emotions (e.g. [43]) or only subsets of the
27 defined AUs. Except for geometric-feature-based methods
proposed in [22, 23, 35], none of the existing systems attains
automatic recognition of AUs temporal segments. Also, except
for the method based on Motion History Images proposed
in [36], none of the past works attempted automatic AU
recognition using of a DT-based approach.

In this work we present a novel DT-based approach to
automatic facial expression analysis in terms of all 27 AUs
and their temporal segments. The novelties in this work are:

• We propose a new set of adaptive and dynamic texture
features for representing facial changes that are based on
Free-form Deformations (FFD).

• We introduce a novel non-uniform decomposition of the
facial area to facial regions within which features are
extracted. This is based on a quadtree decomposition
of motion images, and results in more features being
allocated to areas that are important for recognition of
an AU and less features being allocated to other areas.

• We combine a discriminative, frame-based GentleBoost
classifier with a dynamic, generative HMM model for
(temporal) AU classification in an input face video.

• This is the second DT-based method for AU recognition
proposed. We compare our method to the earlier method
[36], and show a clear improvement in performance.

An early version of this work appeared in [16]. The outline
of the paper is as follows. Section 2 provides an overview
of the related research. Section 3 presents the two utilized
approaches to modelling dynamics and the appearance in the
face region of an input video (MHI and FFD) and explains the
methodology used to detect AUs and their temporal segments.
Section 4 describes the utilized datasets, the evaluation study
and discusses the results. Section 5 concludes the paper.

2 STATE OF THE ART

2.1 Facial Features

Existing approaches to facial expression analysis can be di-
vided into geometric and appearance-based approaches. Dy-
namic texture recognition can be seen as a generalization
of appearance-based approaches. Geometric features include
shapes and positions of face components, as well as the
location of facial feature points (such as the corners of the
mouth). Often, the position and shape of these components
and/or fiducial points are detected in the first frame and
then tracked throughout the sequence. On the other hand,
appearance-based methods rely on skin motion and texture
changes (deformations of the skin) such as wrinkles, bulges
and furrows. Both approaches have advantages and disad-
vantages. Geometric features only consider the motion of a
number of points, so one ignores much information present in
the skin texture changes. On the other hand, appearance-based
methods may be more susceptible to changes in illumination
and differences between individuals. See [25, 40] for an
extensive overview of facial expression recognition methods.

2.1.1 Geometric-feature-based approaches
Approaches that use only geometric features mostly rely on
detecting sets of fiducial facial points (e.g. [26, 23, 35]),a
connected face mesh or active shape model (e.g. [13, 7, 5, 17]),
or face component shape parametrization (e.g. [31]). Next,
the points or shapes are tracked throughout the video and the
utilized features are their relative and absolute position, mutual
spatial position, speed, acceleration, etc. A geometric approach
that attempts to automatically detect temporal segments of
AUs is the work of Pantic and colleagues [22, 23, 35]. They
locate and track a number of facial fiducial points and extract
a set of spatio-temporal features from the trajectories. In[22]
and [23], they use a rule-based approach to detect AUs and
their temporal segments, while in [35] they use a combination
of SVMs and HMMs to do so. Using only the movement
of a number of feature points makes it difficult to detect
certain AUs, such as AU 11 (nasolabial furrow deepener), 14
(mouth corner dimpler), 17 (chin raiser), 28 (inward sucking
of the lips) (see also Fig. 1), the activation of which is not
apparent from movements of facial points but rather from
changes in skin texture. Yet, these AUs are typical for facial
expressions of emotions such as sadness (see EMFACS [10]),
and for expressions of more complex mental states including
puzzlement and disagreement [11], which are of immense
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importance if the goal is to realize human-centred, adaptive
interfaces. On the contrary, our appearance-based approach is
capable of detecting the furrows and wrinkles associated with
these AUs and is therefore better equipped to recognize them.

2.1.2 Appearance-based approaches
Systems using only appearance-based features have been pro-
posed in e.g. [18, 3, 4, 14, 2, 20, 36]. Several researchers have
used Gabor wavelet coefficients as features (e.g. [14, 42, 38]).
Bartlett et al. [3, 18, 4] have tried different methods such
as optical flow, explicit feature measurement (i.e. length of
wrinkles, degree of eye opening), ICA and the use of Gabor
wavelets. They report that Gabor wavelets render the best
results [18]. Other techniques used include optical flow [2]
and Active Appearance Models [20]. Tian et al. [31, 32] use a
combination of geometric and appearance-based features (Ga-
bor wavelets). They claim that the former features outperform
the latter ones, yet using both yields the best result.

2.1.3 Dynamic-Texture based approaches
An emerging new method of appearance-based activity recog-
nition is known as Dynamic Texture recognition. A Dynamic
Texture (DT) can be defined as a “spatially repetitive, time-
varying visual pattern that forms an image sequence with
certain temporal stationarity” [6]. Typical examples of DTs
are smoke, fire, sea waves and talking faces. Many existing
approaches to recognition of DTs are based on optical flow
[28, 19]. A different approach is used in [30]. Instead of
using optical flow, they use system identification techniques
to learn generative models. Recently, Chetverikov and Péteri
[6] published an extensive overview of DT approaches.

The techniques applied to the DT recognition problem
can also be used to tackle the problem of facial expression
recognition. Valstar et al. [36] encoded face motion into
Motion History Images. This representation shows a sequence
of motion energy images superimposed in a single image,
detailing recent motion in the face. An extended version of
MHI-based facial expression recognition is proposed in this
work as well. In this work, videos are temporally segmented by
manually selecting the start and endpoints of an AU activation
and a single MHI is created from 6 frames distributed equidis-
tantly between these points. In our implementation, an MHI
is created for a temporal window around each frame without
any manual input. Also, while their method uses a multi-class
classifier, we train separate binary classifiers for each AU and
therefore we can detect any combination of AUs.

Zhao and Pietikäinen [43, 44] use volume local binary
patterns (LBP), a temporal extension of local binary patterns
often used in 2D texture analysis. The face is divided into
overlapping blocks and the extracted LBP features in each
block are concatenated into a single feature vector. SVMs are
used for classification. The approach shows promising results,
although only the six prototypic emotions are recognized and
no temporal segmentation is performed. They normalize the
face using the eye position in the first frame, but they ignore
any rigid head movement that may occur during the sequence.
In addition, instead of our learned class(AU)-specific quadtree
placement method for feature extraction regions, they use fixed

overlapping blocks distributed evenly over the face. To the
best of our knowledge, our method is the only other DT-based
method for facial expression analysis proposed so far.

3 METHODOLOGY

Fig. 2 gives an overview of our system. In the preprocessing
phase, the face is located in the first frame of an input video
and head motion is suppressed by an affine rigid face registra-
tion. Next, non-rigid motion is estimated between consecutive
frames by the use of either Non-rigid Registration using
Free-form Deformations (FFDs) or Motion History Images
(MHIs). For each AU, a quadtree decomposition is defined
to identify face regions related to that AU. In these regions,
orientation histogram feature descriptors are extracted.Finally,
a combined GentleBoost classifier and a Hidden Markov
Model (HMM) are used to classify the sequence in terms of
AUs and their temporal segments. In the remainder of this
section the details of each processing phase are described.

3.1 Rigid face registration

In order to locate the face in the first frame of the sequence, we
assume the face is expressionless and in a near-frontal position
in that frame and use the fully automatic face and facial point
detection algorithm proposed in [37]. This algorithm uses an
adapted version of the Viola-Jones face detector to locate the
face. 20 facial characteristic points and a facial boundingbox
are detected by using Gabor-feature-based boosted classifiers.

To suppress inter-sequence variations (i.e. facial shape dif-
ferences) and intra-sequence variations (i.e. rigid head mo-
tion), registration techniques are applied to find a displacement
field T that registers each frame to a neutral reference frame,
while maintaining the facial expression:

T = Tinter ◦ Tintra. (1)

The intra-sequence displacement fieldTintra is modelled as
a simple affine registration. The facial part of each frame in
the sequence is registered to the facial part of the first frame
to suppress minor head motions. This is done using a gradient
descent optimization, with the squared sum of differences
(SSD) of the grey level values as a distance metric.

The inter-subject displacement fieldTinter is again mod-
elled as an affine registration. A subset of 9 of the 20 facial
points detected in the first frame that are stable (i.e., their lo-
cation is mostly unaffected by facial expressions) is registered
to a predefined reference set of facial points. This predefined
set of reference points is taken from an expressionless image
of a subject that was not used in the rest of the experiments.
The displacement fieldTinter is applied to the entire image
sequence to eliminate inter-subject differences in facialshape.

TheTintra andTinter registrations are performed separately
sinceTinter is a geometric registration of two sets of fiducial
facial points, whereasTintra is an appearance-based registra-
tion based on the minimization of the sum of squares of the
motion-compensated image intensities. Therefore, we can not
combine the two registrations. Let us also note here, that intra-
sequence transforms (i.e., from a frame to the previous one)
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Fig. 2: Outline of the proposed method.

Fig. 3: An illustration of the rigid registration process. Also
shown are the 10 facial feature points used for registration.

are in general smaller and therefore more easily estimated than
the combined transform to a global reference frame. However,
once estimated,Tinter and Tintra are combined and applied
as a single transformation. An illustration of the two stepsand
the used facial points is given in Fig. 3.

3.2 Motion representation

Most existing approaches base their classification on either
single frames or entire videos. Here, we use overlapping
sliding windows of different sizes and classify each window
in terms of depicted AUs and their temporal segments. In any
given frame, each AU can be in one of four different temporal
segments: neutral (inactive), onset, apex, or offset. Different
AUs have different onset and offset durations. Therefore it
is useful to have a flexibleθ (size of temporal window) and
consider several sizes. The onset of AU 45(blink), for instance,
has an average duration of 2.4 frames (in the utilized datasets).
On the other hand, the offset of AU 12 (smile) lasts 15.4
frames on average. A temporal window of 2 frames is well-
suited to find the onset of AU 45, but it is hard to detect
the onset of AU 12 using such a window. Therefore, several
window sizes are tested, ranging from 2 frames to 20 frames.
96.4% of all onsets/offsets in our dataset last 20 frames or
less, so this size suffices to easily capture most activations.

To represent the motion in the face due to facial expressions,
two different methods of Motion History Images and Non-
rigid registration using Free-form Deformations have been
investigated, which will now be discussed in detail.

3.2.1 Motion History Images
Motion history images (MHIs) were first proposed by Davis
and Bobick [8]. MHIs compress the motion over a number
of frames into a single image. This is done by layering the
thresholded differences between consecutive frames one over
the other. In doing so, an image is obtained that gives an
indication of the motion occurring in the observed time-frame.

Let t be the current frame and letθ be the temporal window
size. Then,MHIθ

t consists of the weighted layered binary
difference images for each consecutive two frames(t− θ

2
, t−

θ
2

+ 1), . . . , (t + θ
2
− 2, t + θ

2
− 1). A binary difference image

for the pair(t, t + 1) is denoted withdt and is defined as

dt(x, y) = b

({

1 |g(x, y, t) − g(x, y, t + 1)| > γ

0 otherwise

)

, (2)

whereg(·, ·, t) is framet filtered by a Gaussian filter of size
2, γ is a noise threshold set to 4 (this means that two pixels
must differ 4 grey levels to be classified as different),b is a
binary opening filter applied to the difference image to remove
remaining isolated small noise spots with an area smaller than
5 pixels.g was varied between 0 and 10,γ was varied between
1 and 20,b was varied between 0 and 20. The parameters were
varied on a small set of videos and the values as used above
gave the best results for recognition.

Using weighted versions of these binary difference images,
the MHI is then defined as:

Mθ
t =

1

θ
max

s
({(s + 1)dt− θ

2
+s|0 ≤ s ≤ θ − 1}). (3)

That is, the value at each pixel of the MHI is the weight of
the last difference image in the window that depicts motion,
or 0 if the difference images do not show any motion.

In the original implementation by Davis [8], motion vectors
are retrieved from the MHI by simply taking the Sobel gradient
of the image. This will however only give motion vectors at
the borders of each grey level intensity in the image. This
works well in the case that the MHIs show smooth and large
motion, but in our case the motion is usually shorter and over
a smaller distance, leading to less smooth gradients in the
image. Applying the Sobel gradient in such a case leads to
a very sparse motion representation. The approach taken here
is as follows. For each pixel that is not a background pixel
(i.e. pixels whereMθ

t is 0 since no motion was detected), we
search in its vicinity for the nearest pixel of higher intensity
(without crossing through background pixels). The direction
in which a brighter pixel lies (if there is one) is the direction
of motion in that pixel. In the case that multiple brighter pixels
are found at the same distance, the pixel closest to the centre
of gravity of those pixels is chosen. This gives us a dense and
informative representation of the occurrence and the direction
of motion. This is illustrated in Fig. 4.

3.2.2 Non-rigid Registration using FFDs

This method is an adapted version of the method proposed by
Rueckert et al. [29], which uses a free-form deformation (FFD)
model based on b-splines. The method was originally used to
register breast MR images, where the breast undergoes local
shape changes as a result of breathing and patient motion.
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Fig. 4: Illustration of the estimation of a motion vector field
from an MHI. (a): Original MHI. (b): for each pixel, the
closest neighbouring brighter pixel is found (without crossing
background pixels). (c): This process is repeated for each pixel,
resulting in the motion vector field shown here.

Let Ωt denote the grey-level image of the face region at
frame t, where Ωt(x, y) is the grey-level intensity at pixel
(x, y). Given a pixel (x, y) in frame t, let (x̂, ŷ) be the
unknown location of its corresponding pixel in framet − 1.
Then, the non-rigid registration method is used to estimatea
motion vector fieldF̂t between framest andt− 1, such that:

(x̂, ŷ) = (x, y) + F̂t(x, y) (4)

To estimateF̂t, we select aU × V lattice Φt of control
points with coordinatesφt(u, v) in Ωt, evenly spaced with
spacingd. Then, non-rigid registration is used to alignΦt

with Ωt−1, resulting in a displaced latticêΦt−1 = Φt + Φδ.
Then, F̂t can be derived by b-spline interpolation fromΦδ.
To estimateΦ̂t−1, a cost functionC is minimized. Rueckert
et al. [29] use normalized mutual information as the image
alignment criterion. However, in the 2D low-resolution case
considered here, not enough sample data is available to make
a good estimate of the image probability density function from
the joint histograms. Therefore, we use the sum of squared
differences (SSD) as the image alignment criterion, i.e. :

C(Φ̂t−1) =
∑

x,y

(Ωt(x, y) − Ωt−1(x̂, ŷ))2 (5)

The full algorithm for estimatinĝΦt−1 (and thereforeΦδ)
is given in Fig. 5. We can calculatêFt using b-spline interpo-
lation onΦδ.

For a pixel at location(x, y), let φt(u, v) be the control
point with coordinate(x0, y0) that is the nearest control point
lower and to the left of(x, y), i.e. it satisfies:

x0 ≤ x < x0 + d, y0 ≤ y < y0 + d (6)

In addition, let φδ(u, v) denote the vector that displaces
φt(u, v) to φ̂t−1(u, v). Then, to derive the displacement for
any pixel (x, y), we use a b-spline interpolation between its
16 closest neighbouring control points (see Fig. 6). This gives
us the estimate of the displacement fieldF̂t

F̂t(x, y) =

3
∑

k=0

3
∑

l=0

Bk(a)Bl(b)φδ(u + k − 1, v + l − 1), (7)

wherea = x−x0, b = y−y0 andBn is thenth basis function

Find the 20 facial points in the first frame of the sequence
Find Tinter (affine transformation to reference facial points)
Apply Tinter to the entire sequence
foreach frame t do

Find Tintra (affine transformation to frame 1) and apply it
Initialize the control point latticêΦ0

t−1 asΦ0
t

foreach control point densityd do
Calculate the gradient vector of the cost functionC

in terms ofΦ̂d
t−1: ∇C =

δC(Φ̂d
t−1

)

δΦ̂d
t−1

while ||∇C|| > ǫ do
Recalculate the control point positions:
Φ̂d

t−1 = Φ̂d
t−1 + µ ∇C

||∇C||

Recalculate∇C
end
Increase the densityd of the control point lattice
Add points toΦ̂d+1

t−1 from Φ̂d
t−1 by b-spline interpolation

end
Derive Φδ : Φδ = Φ̂t−1 − Φt

Use b-spline interpolation to derivêFt from Φδ end

Fig. 5: The non-rigid registration algorithm.ǫ is a stopping
criterion andµ is the step size in the recalculation of control
point positions. The values for both are taken from [29].

of the uniform cubic b-spline, i.e.:

B0(a) = (−a3 + 3a2 − 3a + 1)/6,

B1(a) = (3a3 + 6a2 + 4)/6,

B2(a) = (−3a3 + 3a2 + 3a + 1)/6,

B3(a) = a3/6.

To speed up the process, and avoid local minima, we use
a hierarchical approach in which the lattice density is being
doubled at every level in the hierarchy. The coarsest lattice Φ0

t

is placed around the pointc = (cx, cy) at the intersection of
the horizontal line that connects the inner eye corners, andthe
vertical line passing through the tip of the nose and the centre
of the upper the and bottom lip. Then,

Φ0
t =

{

(u, v)

∣

∣

∣

∣

u ∈ [cx − 2id, . . . , cx + 2id],
v ∈ [cy − 2id, . . . , cy + 4id]

}

(8)

where id is the distance between the eye pupils (i.e.Φ0
t

consists of 35 control points). New control points are iter-
atively added in between, until the spacing becomes0.25id
(approximately the size of a pupil), giving 1617 control points.
This has proven sufficient to capture most movements and
gives a good balance between accuracy and calculation speed.

Having estimatedF̂t, we now have a motion vector field
depicting the facial motion between framet − 1 and t, from
which orientation histogram features can be extracted. For
feature extraction, we actually consider the motion vectorfield
sequencêF θ

t over a sliding window of sizeθ around framet.
Fig. 7 shows an example of the MHI and FFD methods. Fig.

7(a) and 7(b) show the first and last frame of the sequence.
Fig. 7(c) shows the resulting MHIMθ

t , whereθ is set such
as to include the entire sequence. It is quite easy for humans
to recognize the face motion from the MHI. Fig. 7(d) shows
the motion field sequencêF θ

t from the FFD method applied
to a rectangular grid. The face motion (Fig. 7(f)) is less clear
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Fig. 6: Illustration of the B-spline interpolation showingan
image Ωt and the control point latticeΦt, as well as the
estimated Φ̂t−1 aligned with Ωt−1. To estimate the new
position(x̂, ŷ) of the point at(x, y), only the 16 control points
shown in a lighter, red colour are used.

(a) First frame (b) Last frame (c) Mθ
t

(d) F̂ θ
t applied

to a grid
(e) F̂ θ

t applied
to first frame

(f) Difference
between (b),(e)

Fig. 7: Example of MHI and FFD techniques.

to the human eye from this visualization of the transform.
However, when we transform the first frame by applyingF̂ θ

t

to get an estimate of the last frame, the similarity is clear as
shown in Fig. 7(e). In addition, one can see that between Fig.
7(a) and 7(b), the subject shows a slight squinting of the eyes
(AU6). While this is invisible in the resulting MHI (Fig. 7(c)),
it is visible in the motion field derived from FFD (Fig. 7(d)),
indicating that the FFD method is more sensitive to subtle
motions than the MHI method.

3.3 Feature Extraction

3.3.1 Quadtree Decomposition

In order to define the face sub-regions at which features will
be extracted, we use a quadtree decomposition. Instead of
dividing the face region into a uniform grid (e.g. as in [43])
or manually partitioning the face, a quadtree decomposition
is used to divide the regions in a such a manner that areas
showing much motion during the activation of a specific AU
are divided in a large number of smaller sub-regions, while
those showing little motion are divided into a small number of

large sub-regions. This results in an efficient allocation of the
features. We note that different features (i.e. different quadtree
decompositions) are used for the analysis of different AUs.

Some AUs are very similar in appearance but differ greatly
in the temporal domain. For instance, AU 43 (closed eyes)
looks exactly like AU 45 (blink) but lasts significantly longer.
Therefore, we also use a number of temporal regions to extract
features. LetΘa,s be the collection of all sliding windows
of size θ around the frames depicting a particular AUa in
a particular temporal segments in the training set. We then
use a quadtree decomposition specific to each AU and the
segments onset and offset on a set of projections ofΘa,s to
decide where to extract features to recognize the target AU
and its target temporal segment.

Three projections of each window are made showing the
motion magnitude, the motion over time in the horizontal
direction, and the motion over time in the vertical direction:

P θ
mag(x, y) =

∑

t

u(x, y, t)2 + v(x, y, t)2, (9)

P θ
tx(t, x) =

∑

y

u(x, y, t)2, (10)

P θ
ty(t, y) =

∑

x

v(x, y, t)2 (11)

whereu(x, y, t) andv(x, y, t) are the horizontal and vertical
components of the motion vector field sequenceF̂ θ

t . These
projections are then summed over all windows inΘa,s to get
the final projections used for the quadtree decomposition:

PΘa,s

mag (x, y) =
∑

θ∈Θa,s

P θ
mag(x, y), (12)

P
Θa,s

tx (t, x) =
∑

θ∈Θa,s

P θ
tx(t, x), (13)

P
Θa,s

ty (t, y) =
∑

θ∈Θa,s

P θ
ty(t, y) (14)

These three images then undergo a quadtree decomposition
to determine a set of 2D regions ((x, y)-, (t, x)-, and (t, y)-
regions) where features will be extracted. The defined pro-
jections show us exactly where much motion occurs for a
particular AU and a particular temporal segment and where
there is less motion. The quadtree decomposition algorithmis
outlined in Fig. 8. The splitting thresholdτ was set to0.1,
meaning a region in the quadtree will be split if the region
accounts for 10% of the total motion in the frame. This gives
a reasonable balance between having too large regions, so the
detail is lost, and too many small regions, where the features
become less effective as facial features do no longer alwaysfall
in the same region. The minimum region sizeσ is defined to
be0.25id, whereid is the interocular distance. In other words,
the minimum region size is about the size of a pupil. Extracting
features in smaller regions will not be very informative dueto
small variations in facial feature locations in different subjects.
Some examples of motion magnitude images and the resulting
quadtree decompositions are shown in Fig. 9. We can see in
Fig. 9(e) that for AU46R (right eye wink) most of the features
will be extracted in the eye area, where all the motion occurs.
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Initialize R with a single region (the entire face region)
Defineptotal as the summed value of all pixels inP
Defineτ as the splitting threshold
Defineσ as the minimum size of a region
while True do

foreach regionr in R do
Calculatepr, the summed value of all pixels inr
if pr < τ · ptotal and size(r) > σ then

Remover from R
Split r in 4 equally sized rectangles
Add these toR

end
end
if no region was splitthen stop

end

Fig. 8: The quadtree decomposition algorithm.τ is the thresh-
old for splitting,σ is the minimum region size.

Fig. 9: Quadtree decompositions: (a,b,c,d) Onset of AU
12(smile); (e,f,g,h) Onset of AU 46R(right eye wink). Shown
for each AU are example frames (a,e) and the three projec-
tions P

Θa,s
mag (b,f), P

Θa,s

tx (c,g), PΘa,s

ty (d,h). Overlaid on each
projection is the resulting quadtree decomposition.

In Θa,s, some frames also show the activation of other AUs
than a. Usually, the activation of other AUs does not occur
frequently enough to significantly alter the decomposition.
However, in some cases, AUs co-occur very frequently and the
decomposition shows some of the motion of the co-occurring
AU. It may then happen that some features corresponding to
the co-occurring AU are then selected to classifya.

3.3.2 Features

After generating the quadtree decompositions, we extract the
features for the sliding window around each frame in the
dataset. We consider theu(x, y, t) andv(x, y, t) components
from F̂ θ

t in the sub-regions determined by the quadtree de-
composition ofPΘa,s

mag (x, y). In each sub-region 11 features are
extracted from the components: an orientation histogram of8
directions, the divergence, the curl, and the motion magnitude.

For the temporal regions determined by the decompositions
of P

Θa,s

tx (t, x) andP
Θa,s

ty (t, y), we first determine the projec-
tionsP θ

tx(t, x) andP θ
ty(t, y) for the test frame in question. For

each sub-region in the projections, we extract 3 features: the

AU 1 5 9 12 16 24 27
onset original 2013 2013 1551 1551 1551 1650 1386
onset selected 67 67 34 47 19 87 12
offset original 1452 1815 1551 1683 1551 1749 1683
offset selected 90 85 76 86 34 86 73

TABLE 1: Original number of features and number of features
selected by GentleBoost per AU when trained on the entire
MMI dataset with a window-size of 20 frames.

average absolute motion, the average amount of positive (i.e.
left, upward) motion and the average amount of negative (i.e.
right, downward) motion.

3.4 Classification

We use the GentleBoost algorithm [12] for feature selection
and classification. Advantages of GentleBoost over AdaBoost
are that it converges faster and is more reliable when stability
is an issue [12]. For each AU and each temporal segment
characterised by motion (i.e. onset, offset), we train a ded-
icated one-vs-all GentleBoost classifier. Since our dataset is
rather unbalanced (over 95% of the frames in the database
depict expressionless faces), we initialize the weights such that
both the positive and the negative classes carry equal weight.
This prevents that all frames are classified as neutral. The
GentleBoost algorithm is used to select a linear combination
of features one at a time until the classification no longer
improves by adding more features. This gives a reasonable bal-
ance between speed and complexity. The number of features
selected for each classifier range between 19 and 93, with an
average of 74 features selected. Table 1 gives an overview of
the number of selected features for several AUs.

The first three selected features for some of the classifiers
are shown in Figures 10-11. In the images, for each feature
selected from thePΘa,s

mag -projection, a neutral face image is
overlaid to indicate the location of the region. The selected
features correspond reasonably well to the intuitively inter-
esting features/regions for each AU. TheP

Θa,s
mag -projection is

the most important (and most often selected) projection since
most information is available in the spatial domain. This isalso
the reason why the problem of facial expression recognition
can be solved (to a certain extent) using static images (e.g.
[26]). However, for some AUs, the information in the spatial
magnitude projection is insufficient to distinguish them from
other AUs. One example is AU 43 (closed eyes), which only
differs from AU 45 (blink) in the temporal domain. Since AU
45 is much more common, an AU 43 detector that does not
take the temporal domain into account would detect many false
positives. Fig. 11 shows that a temporal feature is the second
most important one in the detection of the onset of AU 43. The
feature in question measures the amount of upward motion in
the eyelid area for the next 2 frames. If the depicted AU were
AU 45, then the next 2 frames after any of the onset frames
should show upward motion as the eye would be be opening
again. In AU 43 however, the next 2 frames after any of the
onset frames will show no motion as the eyes will still be
closed. Thus, the absence of upward motion in this area in a
period of 2 frames after an onset frame is a very good way to
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(a) P
Θ1,8
mag :

divergence
(b) P

Θ1,8
mag :

divergence
(c) P

Θ1,8
mag :

divergence

Fig. 10: First three selected features for onset of AU 1 (inner
brow raiser), window size 8, superimposed on a neutral frame.

(a) P
Θ43,8
mag :

divergence
(b) P

Θ43,8

ty : no
upward motion

(c) P
Θ43,8
mag :

divergence

Fig. 11: First three selected features for onset of AU 43 (closed
eyes), window size 8, superimposed on a neutral frame. (b)
depicts the absence of upwards motion in shown y-area of
frame t + 2.

tell apart AU 43 from AU 45 onset segments.
Each onset/offset GentleBoost classifier returns a single

number per frame indicating the confidence that that frame
depicts the target AU and the target temporal segment. In order
to combine the onset/offset GentleBoost classifiers into one
AU recognizer, a continuous HMM is used. The motivation
for using an HMM is to use the knowledge that we can derive
from our training set about the prior probabilities of each
temporal segment of an AU and its duration (represented in
the HMM’s transition matrix). Hence, an HMM is trained for
the classification of each AU.

HMMs are defined byλ = {Λ, B, Π}, where Λ is the
transition matrix,B is the emission matrix andΠ is the initial
state probability distribution. These are all estimated from
the training set, where the outputs of the onset- and offset-
GentleBoost classifiers are used to calculate the emission
matrix B for the HMM by fitting a Gaussian to the values
of both outputs in any temporal state. Then, the probability
for each state can be calculated given the output of the
GentleBoost classifiers in a particular frame.

The HMM has four states, one corresponding to each
of the temporal segments. The initial probabilitiesΠ show
that the sequences in our dataset usually start in the neutral
segment (i.e. no AU is depicted), but on rare occasions the
AU is already in one of the other states. Based on the initial
probabilitiesΠ, the transition probabilitiesΛ and emission
probability matrix B, the HMM decides the mostly likely
path through the temporal segment states for the input image
sequence, using the standard Viterbi algorithm. This results in

Fig. 12: The states and transition probabilities for an HMM
trained on AU 1. Initial probabilities are denoted below the
state names. Transitions with probability 0 are not shown.

the classification of the temporal segment for each frame in
the tested image sequence.

The HMM facilitates a degree of temporal filtering. For
instance, given that the input data temporal resolution is 25 fps
and given the facial anatomy rules, it is practically impossible
to have an apex followed by a neutral phase and this is
reflected in the transition probabilitiesΛ. Also, the HMM
tends to smooth out the results of the GentleBoost classifiers
(for instance, short incorrect detections are usually filtered
out). However, it only captures the temporal dynamics to a
limited degree, since it operates under the Markov assumption
that a signal value at timet is only dependent on the signal
value at timet−1. For example, the HMM does not explicitly
prevent onsets that last only one frame (even though in most
AUs, the minimum onset duration is much longer). Yet it does
model these dynamics implicitly through its use of transition
probabilities between the states.

An example of the learned transition probabilitiesΛ for one
HMM, trained to recognize AU 1, is given in Fig. 12. The
transition probabilities say something about the state duration.
For instance, the transition probability forneutral→ neutral
is very high, since the duration of a neutral state is usually
very long (it is as long as the video itself when the video does
not contain the target AU). The normal sequence of states
is neutral → onset→ apex→ offset→ neutral. However,
the transition probabilities show that, although highly unlikely,
transitionsapex→ onsetor offset→ apexdo occur. This is
typical for spontaneously displayed facial expressions which
are characterized by multiple apexes [11, 23]. As both utilized
datasets, the MMI and the Cohn-Kanade dataset, contain
recordings of acted (rather than spontaneously displayed)
facial expressions, occurrence of multiple apexes is rare and
unlikely. In the SAL spontaneous expression dataset on the
other hand, multiple apexes occur quite frequently. However,
especially in the MMI dataset and especially by brow actions
(AU1, AU2), smiles (AU12), and parting of the lips (AU25),
some recordings seem to be capturing spontaneous (uncon-
sciously displayed) rather than purely acted expressions.

4 EXPERIMENTS

4.1 Datasets

The first dataset consists of 264 image sequences
taken from the MMI facial expression database [27]
(www.mmifacedb.com). To the best of our knowledge, this
data is the largest freely available dataset of facial behaviour
recordings. Each image sequence used in this study depicts
a (near-)frontal view of a face showing one or more AUs.
The image sequences are chosen such that all AUs under
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consideration are present in at least ten of the sequences
and distributed over 15 subjects. The image sequences last
on average 3.4 seconds and were all manually coded for the
presence of AUs. Ten-fold cross-validation was used, with
the folds divided such that each fold contains at least one
example of each AU. Temporal window sizes ranging from 4
to 20 frames were all tested independently and the window
size that yielded the best result was chosen.

To test the generalization performance of the system, we
have also evaluated the proposed FFD-based method on the
Cohn-Kanade (CK) dataset [15], arguably the most widely
used dataset in the field. We only tested the system on those
AUs for which more than ten examples existed in the CK
dataset. This resulted in examples of 18 AUs shown in 143
sequences in total. The original CK dataset only has event
coding for the AUs (stating only whether an AU occurs in
the sequence, not a frame-by-frame temporal segment coding).
Here, we have used frame-by-frame annotations provided by
Valstar& Pantic [34] based on the given event coding.

Finally, we also tested the method on the SAL (Sensitive
Artificial Listener) dataset containing displays of spontaneous
expressions [9]. The expressions were elicited in human-
computer conversations through a ’Sensitive Artificial Lis-
tener’ interface. Subjects converse with one of four avatars,
each having its own personality. The idea is for subjects to
unintentionally and spontaneously mirror the emotional states
of the avatars. 10 subjects were recorded for around 20 minutes
each. The speech sections were removed from the data, leaving
77 sequences that depict spontaneous facial expressions. For 4
subjects, the data has been FACS-coded on a frame-by-frame
basis, for the other 6 subjects only event coding exists. Since
our method requires frame-by-frame annotations to train the
classifiers, we used data of 4 subjects for training and we tested
on the remaining 6 subjects. We only tested our method on
the 10 AUs for which there were at least 5 training examples.

4.2 Results

Fig. 13 shows two typical results for AU 27 (mouth stretch).
As can be seen in Fig. 13(a), the GentleBoost classifiers yield
good results and the resulting labelling is almost perfect for
θ = 20. For θ = 2, the GentleBoost classifiers yield less
smooth results (Fig. 13(b)). Even so, the HMM filters out the
jitter very effectively.

4.2.1 Event Coding

Table 2 gives the results for all AUs tested with the MHI
and the FFD technique on the MMI dataset (per AU, the
window widthθ that gave the highestF1-score is mentioned).
The F1-measure is a weighted mean of the precision and
recall measures. In the manual labelling of the dataset, AU
46 (wink) has been split up into 46L and 46R, since the
appearance differs greatly depending on which eye is used
to wink. Similarly, AU 28 (lip suck) is scored when both
lips are sucked into the mouth, and AU 28B and AU 28T
are scored when only the lower or the upper lip is sucked
in. This gives us a total of 30 classes, based on the 27 AUs
defined in FACS. As can be seen from Table 2, both techniques
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Fig. 13: Example classification results. Top: The output of the
GentleBoost-classifiers. Bottom: The true and estimated frame
labels (as predicted by the HMM).θ is the used temporal
window size.

Results FFD method Results MHI method
AU θ CR RC PR F1 θ CR RC PR F1

1 20 97.7 61.5 88.9 72.7 20 93.9 53.9 41.2 46.7
2 20 97.7 66.7 80.0 72.7 20 96.2 50.0 60.0 54.6
4 20 91.3 74.3 65.0 69.3 20 76.1 91.2 34.1 49.6
5 20 93.6 66.7 38.1 48.5 12 93.6 27.3 25.0 26.1
6 20 96.2 82.4 66.7 73.7 20 93.6 76.9 41.7 54.1
7 8 92.1 54.6 27.3 36.4 8 86.0 45.5 13.9 21.3
9 20 97.0 81.8 60.0 69.2 20 93.6 70.0 33.3 45.2
10 20 97.4 78.6 73.3 75.9 20 95.8 42.9 66.7 52.2
11 12 94.7 77.8 58.3 66.7 16 89.0 33.3 26.1 29.3
12 20 93.6 82.4 50.0 62.2 20 80.3 100 24.6 39.5
13 12 95.5 90.0 45.0 60.0 12 87.9 20.0 7.7 11.1
14 16 91.3 75.0 38.7 51.1 16 91.7 68.8 39.3 50.0
15 8 94.7 75.0 45.0 56.3 20 95.1 25.0 42.9 31.6
16 16 97.0 85.7 66.7 75.0 16 95.8 57.1 61.5 59.3
17 16 83.7 75.3 77.8 76.5 20 74.2 86.7 58.2 69.6
18 16 91.7 63.6 50.0 56.0 12 84.9 47.8 28.2 35.5
20 20 95.1 45.5 41.7 43.5 20 91.3 36.4 20.0 25.8
22 12 93.2 72.7 34.8 47.1 20 94.3 36.4 33.3 34.8
23 16 92.4 58.3 31.8 41.2 16 91.3 8.3 7.7 8.0
24 16 89.4 61.1 34.4 44.0 16 89.0 20.0 15.0 17.1
25 8 90.5 92.0 78.4 84.7 20 71.6 86.7 50.0 63.4
26 20 95.5 81.8 81.8 81.8 20 82.2 61.3 35.2 44.7
27 20 99.6 100 92.9 96.3 20 95.8 100 54.2 70.3
28 16 93.6 92.9 44.8 60.5 20 88.6 42.9 21.4 28.6
28B 16 95.5 72.7 47.1 57.1 12 92.8 36.4 25.0 29.6
28T 12 92.4 80.0 30.8 44.4 16 84.5 50.0 12.2 19.6
43 20 95.1 60.0 56.3 58.1 20 86.4 20.0 11.1 14.3
45 8 93.6 90.8 93.4 92.1 4 85.6 96.3 75.4 84.6
46L 8 99.2 90.9 90.9 90.9 8 97.0 54.6 66.7 60.0
46R 8 99.2 81.8 100 90.0 12 97.0 27.3 100 42.9
avg - 94.3 75.7 59.7 65.1 - 89.2 52.4 37.7 40.6

AU = Action Unit, θ = Window Size, CR = Classification Rate
RC = Recall Rate, PR = Precision Rate,F1 = F1-measure

TABLE 2: Results for 27 AUs (30 classes) on 264 sequences
from the MMI dataset for the MHI and the FFD method.
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Fig. 14: F1-measure per AU for different window sizes for the FFD method.

have difficulties with subtle AUs (i.e. 5 (upper lid raiser),7
(eye squint), 23 (lip tightener)). These problems possiblystem
from the method of extracting motion statistics over larger
regions. If the regions are too large, these subtleties are easily
lost (however, having the regions too small generates errors
relating to the rigid registration and inter-subject differences).
Possibly, geometric approaches are better equipped to handle
these AUs (e.g. AU5, AU7), since their activation is clearly
observable from displacements of facial fiducial points andno
averaging of the motion over regions is needed.

It is clear that, overall, the FFD technique produces supe-
rior results to those obtained for the MHI-based approach.
Therefore, in the remainder of this work, only the FFD-based
approach is investigated further. One reason for the inferior
performance of the MHI-based approach is that only intensity
differences above the noise threshold are registered in the
MHI. For instance, if the mouth corner moves (e.g. in AU12),
only the movement of the corner of the mouth is registered in
the related MHI. More subtle and smoother motion of the skin
(e.g., on the cheeks) is not registered in the related MHI (see
Fig. 7). In the FFD method however, we will see the entire
cheek deform as a result. Also, in MHIs earlier movements can
obscure later movements (e.g. in AU 28) and fast movements
can show up as disconnected regions that do not produce
motion vectors (e.g. in AU 27).

In general, theF1-measure is reasonably high for most AUs
when the FFD technique is applied, but there is still room
for improvement. In particular, there are many false positives.
Most of these occur in AUs that have a similar appearance.
The AUs performing below 50% are AUs 5 (upper lid raiser),
7 (eye squint), 20 (lip stretcher), 22 (lip funneller), 23 (lip
tightener) and 28T (upper lip inward suck). For most of these
AUs, the reasons for the inaccurate performance lie in the
confusion of the target AU with other AUs. For instance, the
onset of AU7 (eye squint) is often confused with the onset of
AU45 (blink), the offset of AU5 is very similar to the onset of
AU45 (and vice versa), and AUs 20, 23, 24 and 28T are often
confused with each other since they all involve downward
movement of the upper lip.

Another cause of some false positives is a failure of the
affine registration meant to stabilize the face throughout the
sequence. Out-of-image-plane head motions, for instance,if
not handled well, result in some classifiers classifying rigid
face motions as non-rigid AU activations. We partially address

this issue for spontaneous expressions in Section 4.2.3 by
incorporating the results of a facial point tracker in the rigid
registration process. However, we should note that for very
large out-of-plane rotations, affine registration is not sufficient.
The use of 3D models seems a promising direction. However,
they require the construction of a 3D model that might be
difficult to obtain from monocular image sequences.

Though most AUs perform best with the largest window
size tested, it is clear from the results that AUs with shorter
durations such as AU 45 benefit from a smaller window size.

Fig. 14 shows the results for all AU classifiers for all tested
window widths for the FFD technique. Overall, we see that
the F1-measure improves as the temporal window increases.
Exceptions include AUs with particularly short durations,such
as 7 (eye squint), 45 (blink), 46L (left eye wink), and 46R
(right eye wink).

4.2.2 Temporal Analysis
We were also interested in the timing of the temporal segment
detections with respect to the timing delimited by the ground
truth. This test was run using the optimal window widths as
summarized in Table 2. Only sequences that were correctly
classified in terms of AUs were considered in this test. Four
different temporal segment transitions can be detected,neutral
→ onset, onset→ apex, apex→ offset, andoffset→ neutral.
Fig. 15 shows the average absolute frame deviations per AU
and temporal segment transition. The overall average deviation
is 2.46 frames. 44.12% of the detections are early and 38.18%
are late. The most likely cause of late detection is that most
AUs start and end in a very subtle manner, visible to the human
eye but not sufficiently pronounced to be detected by the
system. Early detections usually occur when a larger temporal
window width is used, where the AU’s segment in question is
already visible in the later frames of the window, but it is not
actually occurring at the frame under consideration (this can
also be seen in Fig. 13a). In general, AUs of shorter duration
also show smaller deviations. Also, the transitions that score
badly are usually subtle ones. The high deviations forapex→
offset in AUs 6 (cheek raiser and lid compressor) and 7 (eye
squint) can be explained by considering that these transitions
are first only slightly visible in the higher cheek region before
becoming apparent in the motion of the eyelids. Since the
eyelid motion is much clearer, our method targets that motion
and misses the cheek raising in the start of the transition.
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Similarly, the offset→ neutral transition in AU 14 (mouth
corner dimpler) has almost all of the motion in the first few
frames and then continues very slowly and subtly. Our method
picks up only the first few frames of this transition.

Another way to look at the temporal analysis results is
to analyse them per window size and transition type. Fig.
16 illustrates that. It shows the proportion of early, timely,
and late detections for all correctly detected transitionsper
window size. It also shows the mean absolute frame offset per
transition and per window size (this is depicted by the narrow
bar, placed on the right side of each of the main bars in the
graph). Interestingly, for theneutral → onset and apex →
offsettransitions the most accurate results are obtained for the
lowest window size and the results deteriorate as the window
size increases. For the other two transitions, the lower window
sizes are actually less accurate and the best results are obtained
at window sizes 8 and 12. This behaviour might be explained
by a few factors. Firstly, most motion occurs in the beginning
of the onset and offset segments, with the endings of those
segments containing slower, more subtle motions. Hence, the
transitions indicating the end of motion (onset→ apex and
offset→ neutral) are detected early since the subtle motion at
the end of the onset and offset segments remains undetected
by the system. The transitions indicating the start of motion
(neutral→ onsetandapex→ offset) are quite unlikely to be
early, simply because there is no prior motion which could be
classified as the transition in question. The results changeas
the window size increases. This is due to the smoothing effect
discussed earlier, due to which the start of motion is detected
earlier and the end of motion is detected later.

4.2.3 Spontaneous Expressions

We performed tests on the SAL dataset, containing 77 se-
quences of spontaneous expressions, mostly smiles and related
expressions. We tested for the 10 AUs that occurred 5 or more
times. We trained on the sequences of 4 of the 10 subjects,
that were annotated frame-by-frame for AUs, and tested on the
data of the other 6 subjects, that were annotated per sequence.

The dataset contains relatively large head motions and
moderate out-of-plane rotations. We note that in the datasets
used in this paper all facial fiducial points were visible at all
times. If that is not the case, one could train a different setof
classifiers for each facial viewpoint.

The results for the SAL dataset are given in Table 3. The
obtained classification rate is 80.2%, which is lower than the

AU θ NT CR RC PR F1

1 12 8 92.86 60.00 75.00 66.67
2 20 10 88.10 57.14 66.67 61.54
6 4 28 85.71 85.71 96.77 90.91
7 4 7 57.14 42.86 60.00 50.00
10 8 13 66.67 80.00 52.17 63.16
12 2 35 95.24 94.87 100.00 97.37
23 12 6 83.33 91.67 64.71 75.86
25 2 33 92.86 92.86 100.00 96.30
26 4 18 76.19 76.32 96.67 85.29
45 16 17 64.29 53.33 94.12 68.09
avg - - 80.24 73.48 80.61 75.52
AU = Action Unit, F1 = F1-score
NT = No. of training examples, CR = Classification Rate
RC = Recall Rate, PR = Precision Rate,θ = Window Size

TABLE 3: Results for testing the system for 10 AUs on 77
sequences from the SAL dataset for the FFD method.

results on the posed data sets (89.8% on CK and 94.3% on
MMI). However, we achieve a satisfactory averageF1-score
of 75.5%, which is in fact higher than for the MMI (65.1%)
and CK (72.1%) datasets. The worst performance is reported
for AUs 2, 7, and 10. AUs 2 and 10 are much exaggerated
in posed expressions and therefore harder to detect in subtle
spontaneous depictions. AU 7 is here also often confused with
AU 45, just as in the MMI dataset. The best performing
AUs are 12, 25, and 6. In fact, these AUs perform much
better than in the MMI dataset. This can be explained by
the fact that many more training samples were available here,
indicating that more training examples can greatly benefit
the performance. In addition, these AUs also occur more
frequently in the test set than in the MMI case, making the test
set less unbalanced compared to the other datasets. We note
that here the selected window sizes are much shorter than
for the MMI dataset. A possible explanation for this is that
spontaneous expressions are generally less smooth and depict
multiple apexes interleaved with onset and offset segments. As
a result, each segment occurs for a shorter time-period.

4.2.4 Generalization Performance

To test the robustness and generalization ability of the pro-
posed FFD method, we performed a smaller test on the Cohn-
Kanade (CK) dataset [15]. We only tested on those AUs for
which at least ten examples exist in the dataset (18 AUs in 143
sequences). The 10-fold cross-validation results are shown in
Table 4. As a reference, theF1-scores for the MMI dataset are
also repeated. The results achieved for the CK dataset are on
average similar to those for the MMI dataset. AUs 2, 5, 12, 15,
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Fig. 16: Percentages of early/on time/late detection per transition and window size. Also shows average frame offset.

20, 24 and 25 perform much better in the CK dataset. Possible
explanations for the inferior performance of AU 10, 11, 14
and 45 lie in the differences in ground truth labelling and the
absence of offset segments in the CK dataset. The two datasets
were labelled in different ways. More specifically, in the CK
database, trace activations (FACS intensity A) were also coded,
whereas in the MMI dataset only AUs of FACS intensity B
and higher were considered. Trace activations (especiallyin
AU 10, 11 and 14) involve very subtle changes in the facial
skin appearance, that remain undetected by our method.

Another difference between the results is that for the CK
dataset, lower window sizes are selected than for the MMI
dataset. Since each sequence in the CK dataset ends at the
apex of the expression with the offset segments cut off, no
GentleBoost classifiers could be trained for the detection of
offsets and the HMM classification relies solely on the onset
detections. Since the duration of onsets is generally shorter
than offsets, shorter window sizes tend to be selected. The
absence of offset phases, especially for fast AUs like AU 45,
in which onset phases can often not be captured in more than
1-2 frames and the detection relies heavily on the detectionof
offset phases, explains the inferior performance for such AUs.
A possible explanation for better performance for AU 2, 5,
12 and 15 lies in the intensity of these expressions present in
the CK dataset. More specifically, facial expression displays
constituting the CK dataset are shorter and more exaggerated
than it is the case with data from the MMI dataset. The better
performance for AUs 24 and 25 can be explained by the greater
number of examples present in the CK dataset.

We compare our results to those reported earlier by Valstar
& Pantic [34], the only other authors that addressed the
problem of AU temporal segments recognition. Valstar &
Pantic use 153 sequences from the CK dataset, where we
use 143. Their geometric-feature-based approach gives on
average very similar results. Interestingly, on this dataset,
the results of Valstar & Pantic are much better for AUs 4
and 7 (the related facial displays are characterized by large
morphological changes which can easily be detected based
on facial point displacements) and the results obtained by
the FFD-based method are much better for AUs 15, 20 and
24 (which activations involve distinct changes in skin texture
without large displacements of facial fiducial points). Also, the

AU θ CR RC PR F1 F V
1

F MMI
1

1 2 88.81 86.89 86.89 86.89 87.6 72.73
2 4 94.41 92.31 87.80 90.00 94.0 72.73
4 20 74.83 85.96 63.64 73.13 87.4 69.33
5 2 92.31 75.86 84.62 80.00 78.3 48.48
6 16 94.41 84.21 76.19 80.00 88.0 73.68
7 16 71.33 72.00 34.62 46.75 76.9 36.36
9 8 93.01 89.47 68.00 77.27 76.4 69.23
10 16 89.51 46.67 50.00 48.28 50.0 75.86
11 4 88.81 50.00 37.50 42.86 —– 66.67
12 8 95.10 90.00 78.26 83.72 92.1 62.22
14 8 93.01 33.33 42.86 37.50 —– 51.06
15 8 92.31 68.42 72.22 70.27 30.0 56.25
17 4 83.92 72.55 80.43 76.29 —– 76.50
20 20 90.91 73.53 86.21 79.37 60.0 43.48
24 4 90.21 70.59 57.14 63.16 14.3 44.00
25 2 95.10 92.68 98.70 95.60 95.3 84.66
27 8 95.80 95.45 80.77 87.50 89.3 96.30
45 2 92.31 81.48 78.57 80.00 —– 92.09

Averages CR RC PR F1

Average our method, 18 AUs 89.78 75.63 70.25 72.14
Average our method, 14 AUs 89.86 80.29 73.21 75.85

Average [34], 14 AUs, 90.3 73.3 79.8 72.83
AU = Action Unit, θ = Window Size, CR = Classification Rate
RC = Recall Rate, PR = Precision Rate,F1 = F1-measure CK dataset
F V

1
= F1 Valstar & Pantic [34],F MMI

1
= F1 on MMI dataset

TABLE 4: Results for testing the system for 18 AUs on 143
sequences of the CK dataset.

Test CR RC PR F1

Trained on MMI, tested on CK 82.52 55.17 65.95 56.13
Trained on MMI, tested on MMI 93.52 76.02 58.79 65.40
Trained on CK, tested on CK 89.78 75.63 70.25 72.14
CR=Classification Rate, RC=Recall Rate, PR=Precision Rate, F1=F1-measure

TABLE 5: Results for cross database testing, 18 AUs.

method of Valstar & Pantic is unable to deal at all with AUs
11 (nasolabial furrow deepener), 14 (mouth corner dimpler)
and 17 (chin raiser), the activation of which is only apparent
from changes in skin texture and cannot be uniquely detected
from displacements of facial fiducial points only [26, 23].

A cross-database test was also performed with the MMI
and CK dataset. Average results are shown in table 5. The
tests were run on those AUs available in both datasets using
a temporal window size of 20 frames. The average result is
slightly lower than the result for training and testing on the
MMI dataset, but this is to be expected given the different
coding styles and other differences between the two datasets.
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Authors † features classification
Bartlett et al. 2005 [3] a,f Gabor filters AdaBoost+SVM
Bartlett et al. 2006 [4] a,f Gabor filters AdaBoost+SVM
Chang 2006 [5] a,f manifold embed. Bayesian
Whitehill & Omlin 2006[39] a,f Haar wavelets AdaBoost
Littlewort et al. 2006 [18] a,f Gabor filters AdaBoost+SVM
Lucey et al. 2007 [20] a,f AAM SVM
Valstar & Pantic 2004 [36] a,t MHIs kNN/rule-based
Pantic & Patras 2005 [22] g,t tracked face points temporal rule-base
Valstar & Pantic 2006 [34] g,t tracked face points AdaBoost+SVM
Valstar & Pantic 2007 [35] g,t tracked face points AdaBoost+SVM
Tong et al. 2007 [33] a,t Gabor filters AdaBoost+DBN
This work a,t FFD GentleBoost+HMM

†: geometric/appearance-based(g/a), temporal-/frame-based(t/f)

TABLE 6: Comparison of AU recognition methods.

Authors AU NS CR F1 FA Hit FRR
CK dataset, Image-based works
Bartlett ’05 [3] 17 313i 94.8 - 3.9 60.2 -
Bartlett ’06 [4] 20 2568i 90.9 - 8.2 80.1 -
Chang ’06 [5] 23 258i 89.4 - - - -
Whitehill ’06 [39] 11 580i 92.4 - - - -
Littlewort ’06 [18] 7 313i 92.9 - - - -
Lucey ’07 [20] 15 (?)i 95.5 - 16.7 - 1.9
CK dataset, Sequence-based works
Valstar ’04 [36] 10 344s 68 - 32.0 - -
Pantic ’05 [22] 21 90s 93.3 - - - -
Valstar ’06 [34] 15 (?)s 90.2 72.9 - - -
Tong ’07 [33] 14 (?)s 93.3 - 5.5 86.3 -
This work 18 143s 89.8 72.1 6.4 75.6 29.1
This work, 15 best AUs 15 143s 92.5 72.5 4.8 73.8 26.1

MMI dataset, Image-based works
Chang ’06 [5] 29 584i 91.9 -
MMI dataset, Sequence-based works
Valstar ’04 [36] 22 253s 61 -
Pantic ’05 [22] 9 45s 86.7 -
Valstar ’07 [35] 23 196s - 66.0
This work 27 264s 94.3 65.1
AU = No. of AUs recognized, NS = number of sequences/frames (s/f) used
CR = Classification Rate,F1 = F1-measure, FA = False Alarm/Accept Rate
Hit = Hit Rate, FRR=False Rejection Rate

TABLE 7: Comparison of results on CK and MMI dataset.

4.2.5 Comparison to earlier work

We compared our method to earlier works that reported results
on either the CK or the MMI dataset. Table 7 gives an
overview of these works. It is interesting to note that most
works are image-based, which means they derive the clas-
sification per frame independently and do not take temporal
information into consideration. Additionally, it means that the
results reported for those works are found using manually
selected ”peak” frames, that is, frames showing the AU in
question at maximum intensity. In contrast, sequence-based
approaches take the whole sequence into account without prior
information as to the location of the peak intensity.

Table 6 shows results reported previously on the CK and
MMI datasets. While the classification rate (the percentageof
correctly classified frames/sequences) is the most commonly
reported measure, it is also the one that is the least informative.
Especially in cases where the dataset is highly unbalanced,
it can be misleading. For example, in our subset of the CK
dataset, the percentage of true positive sequences is below
10% for most AUs. This means that it is possible to report a
90% classification rate by simply classifying every sequence
as negative. Therefore, we report theF1-measure, which gives
a better understanding of the quality of the classifier. Our
results in terms of the classification rate on the CK dataset

are largely comparable to those reported in the other works,
89.8% vs. 90.2%, 93.3%. For the MMI dataset, we outperform
the other works. The main reason for the worse comparative
performance on the CK dataset is probably the absence of
offset segments. In contrast, both the MMI and SAL dataset
contain the offset segments, which can greatly help validate
the occurrence of AUs in our HMM classification scheme.

5 CONCLUSION AND FUTURE WORK

In this work we have proposed a method based on non-rigid
registration using free form deformations to model dynamics
of facial texture in near-frontal-view face image sequences for
the purposes of automatic frame-by-frame recognition of AUs
and their temporal dynamics. To the best of our knowledge,
this is the first appearance-based approach to facial expres-
sion recognition that can detect all AUs and their temporal
segments. We have compared this approach to an extended
version of the previously proposed approach based on Motion
History Images. The FFD-based approach was shown to be
far superior. On average, it achieved anF1-score of 65% on
the MMI facial expression database, 72% on the Cohn-Kanade
database and 76% on the SAL dataset (containing spontaneous
expressions). For each correctly detected temporal segment
transition, the mean of the offset between the actual and the
predicted time of its occurrence is 2.46 frames. We have
compared the proposed FFD-based method to that of Valstar
& Pantic [34, 35], which is the only other existing approach to
recognition of AUs and their temporal segments in frontal view
face images (using a geometric-feature-based approach rather
than an appearance-based approach). Comparable results have
been achieved for the CK facial expression database. The two
approaches seem to complement each other, with some AUs
being better detected with one approach and some AUs being
better detected with the other approach. This is in accordance
to the previously reported findings suggesting that combining
the appearance- and geometric-feature-based approaches to fa-
cial expression analysis will result in an increased performance
[31, 21]. Attempting to fuse the two approaches therefore
seems a natural extension of this work.
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