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Abstract. Recently, the �eld of automatic recognition of users' a�ect ive
states has gained a great deal of attention. Automatic, impl icit recogni-
tion of a�ective states has many applications, ranging from personalized
content recommendation to automatic tutoring systems. In t his work, we
present some promising results of our research in classi�cation of emo-
tions induced by watching music videos. We show robust correlations
between users' self-assessments of arousal and valence andthe frequency
powers of their EEG activity. We present methods for single t rial classi-
�cation using both EEG and peripheral physiological signal s. For EEG,
an average (maximum) classi�cation rate of 55.7% (67.0%) for arousal
and 58.8% (76.0%) for valence was obtained. For peripheral physiological
signals, the results were 58.9% (85.5%) for arousal and 54.2% (78.5%)
for valence.

1 Introduction

Given the enormous amounts of untagged video data available on theweb nowa-
days, the need for automatic categorization and tagging of video content to
enable e�cient indexing and retrieval is evident. Up to this date, the most
widespread method for tagging video data is through manual explicitanno-
tation. This is a slow and cumbersome procedure and cannot keep upwith the
growing amount of created data. An alternative for this method is to automate
the tagging procedure. Recently, considerable progress has been made towards
automatic content-based tagging with acceptable accuracy under restrictive con-
ditions and for speci�c domains. However, research in this area hasshown that
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it is not feasible to fully automate the process for general video tagging in the
foreseeable future due to the existence of the semantic gap.

Emotional tags associated with the video content can play a signi�cant role
for indexing and retrieval purposes. For instance, they can be used in e�cient
retrieval of video content that is in consonance with the a�ective mood and state
of the users. Therefore, extracting emotional tags implicitly by studying the af-
fective states of the users and assigning these as metadata to video content allows
the personalization of the content delivery. One approach to analysis and recog-
nition of emotions is to directly assess the activity of the central nervous system,
speci�cally brain electrical activity, and study the changes in this activity as the
user experiences di�erent emotional states. Several works exist that are related
to emotion recognition from electroencephalogram (EEG) [7, 14, 10, 2]. Further-
more, there are a number of experiments pointing to the fact thatphysiological
activity is not an independent variable in autonomous nervous system patterns
but reects experienced emotional states with consistent correlates[1,17].

To the best of our knowledge, this is the �rst work using music videosas
stimulus material. The possibility of contradictory information receiv ed from
visual and auditory modalities makes this particularly challenging.

There has been a large number of published works in the domain of emo-
tion recognition from physiological signals [11, 2, 18]. Amongst thesestudies, few
of them studied EEG signals and achieved notable results using video stimuli.
Lisetti and Nosaz used peripheral physiological response to recognize emotion
in response to movie scenes [11]. The movie scenes elicited six emotions, namely
sadness, amusement, fear, anger, frustration and surprise. They achieved a high
recognition rate of 84% for the recognition of these six emotions. However the
classi�cation was based on the analysis of the signals in response to pre-selected
segments in the shown video known to be related to highly emotional events.

Kierkels et al. [5] proposed a method for personalized a�ective tagging of
multimedia using physiological signals. Valence and arousal levels of participants'
emotion when watching videos were computed from physiological responses using
linear regression. Quantized arousal and valence levels for a video clip were then
mapped to emotion labels. This mapping gave the possibility to retrievevideo
clips based on keyword queries. So far this novel method achieved low precision.

Yazdani et al. [19] proposed a brain computer interface (BCI) based on P300
evoked potentials to emotionally tag videos with one of the six basic emotions
proposed by Ekman [4]. Their system was trained with eight subjectsand then
tested on four other subjects. They achieved a high accuracy onselecting tags.
However, in their proposed system, a BCI only replaces the interface for explicit
expression of emotional tags. The method does not implicitly tag a multimedia
item using the subject's behavioural and psycho-physiological responses.

In this paper, the EEG and biological signals are acquired from six subjects
as they watch di�erent music videos and methods for automatic recognition of
the user's a�ective states are presented. The rest of the paperis organized as
follows. Section 2 introduces the methodology used in this study including test
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material selection, data acquisition and data processing. Experimental results
are presented and discussed in Section 3 and Section 4 concludes the paper.

2 Methodology

We use the valence-arousal scale proposed by Russell [15], which has been widely
used in research on a�ect, in order to quantitatively describe emotion. In this
scale, each emotional state can be placed on a two-dimensional plane with arousal
and valence as the horizontal and vertical axes. Arousal can range from inactive
(e.g. uninterested,bored) to active (e.g. alert, excited), whereas valence ranges
from unpleasant (e.g. sad, stressed) to pleasant (e.g. happy, elated). In the fol-
lowing sections, the procedures of test material selection and physiological data
acquisition and processing will be explained.

2.1 Subjective Test and Data Selection

The �rst step of our work is to compile a test set of music videos for physiological
data acquisition. The objective of the selection procedure is to ensure that clips
inducing various levels of valence and arousal are included in the �naldata set.

We �rst manually collected 70 candidate music videos spanning diversegen-
res, ages, and styles. From this collection, the �nal set of 20 testvideos were
chosen using a web-based subjective emotion assessment interface. Participants
watched video clips one by one and rated them on a discrete 9-point scale for
each of valence and arousal, as shown in Fig. 1. Each subject watched 17 clips
and, on average, each video clip was rated by 11 subjects.

Fig. 2(a) shows the ratings, averaged over the test subjects, plotted on the
valence-arousal plane. The plane is divided into �ve regions: positivevalence
and positive arousal (V+ A+ ), positive valence and negative arousal (V+ A � ),
negative valence and positive arousal (V� A+ ), negative valence and negative
arousal (V� A � ), and neutral (N ). For each of the �ve regions, the four video clips
showing the largest discriminability from the other four regions werechosen for
inclusion in the test set. In the V� A+ -region, only two video clips were available
and thus each of them was split into two parts that were separatelyused in the
experiments.

The �rst two minute portions of the selected 20 videos were used for the data
acquisition.

2.2 Data Acquisition

The experiments were performed in a laboratory environment with controlled
temperature and illumination. EEG and peripheral physiological signals were
recorded using a Biosemi ActiveTwo system1 on a dedicated recording laptop
(Pentium M, 1.8 GHz). Stimuli were presented on a dedicated stimuluslaptop

1 http://www.biosemi.com
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Fig. 1. Screenshot of the web interface for subjective emotion assessment.

(P4, 3.2GHz) that sent synchronization markers directly to the recording PC.
For displaying the stimuli and recording the user's ratings the software "Pre-
sentation" by Neurobehavioral systems2 was used. In order to minimize eye
movements, all video stimuli were shown with a width of 640 pixels, �lling ap-
proximately a quarter of the screen. 32 active AgCl electrodes were used (placed
according to the international 10-20 system) and the EEG data was recorded
at 512 Hz. At the same time, 13 peripheral physiological signals (which will be
introduced in section 2.4) were also recorded.

Six participants were asked to view the 20 selected music videos, displayed in
a random order. Before the experiment a 2 minute baseline recording was made
and before each trial (video) a 5 second baseline was recorded. After each video
was �nished the participant was asked to perform a self-assessment of their levels
of valence, arousal, and like/dislike which was later used as the ground truth in
the single trial classi�cation. Fig. 2(b) shows a participant shortly b efore the
start of the experiment.

2.3 Data Processing for EEG Signals

Correlation analysis For the investigation of the correlates of the subjective
ratings with the EEG signals, the EEG data was referenced to the common aver-
age, re-sampled to 256 Hz, and high-pass �ltered with a 0.5 Hz cuto�-frequency
using EEGlab3. Eye movement and blinking artefacts were removed with a blind

2 http://www.neurobs.com
3 http://sccn.ucsd.edu/eeglab/
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Fig. 2. (a) Division of the valence-arousal plane into 5 di�erent re gions. The chosen
clips from each region are shown in light red. (b) A participa nt shortly before the
experiment.

source separation technique from the AAR toolbox4 for EEGlab. Then the sig-
nals from the last 30 seconds of each trial (video) were extractedfor further
analysis. To correct for stimulus-unrelated variations in power over time the
EEG signal from the �ve seconds before each video was used as a baseline.

The frequency power of trials and baselines between 2 and 40Hz wasextracted
with Welch's method with windows of 256 samples. The baseline power was then
subtracted from the trial power, yielding the change of power relative to the pre-
stimulus period. These changes of power were then Spearman correlated with the
valence ratings. This was done for each subject separately and the six p-values
per frequency and electrode were then combined to one p-value viaFisher's
method [12].

Classi�cation analysis For the single trial classi�cation of the EEG data, a
�ve second baseline before each trial was subtracted from the data and it was
referenced to the common average (CAR). The data was down-sampled to 100Hz
and bandpass-�ltered between 0.5 and 35Hz to remove DC drifts and suppress
the 50Hz power line interference. Two di�erent feature extraction methods were
compared: power spectral density (PSD) and common spatial patterns (CSP).

A PSD analysis concerns the spectral domain and investigates the rhythmic
activity of brainwaves. The power in each of the frequency bands was calculated
using the Fourier transform of the signal. Often, the delta theta, alpha, beta
and gamma wave bands are used, but here we tried di�erent �xed bandwidths
(from 1 to 10Hz) with 50% band overlap. We also included the di�erence in band
power between every pair of electrodes as features.

CSP was originally proposed by Koles [8]. It is a technique to decomposethe
EEG signal into a number of components based on the variance of the signal that

4 http://www.cs.tut.�/~gomezher/projects/eeg/aar.htm
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takes into account the class labels. In brief, it attempts to extract components
for which the variance is maximal for one class and minimal for the other. Then,
for a new, unclassi�ed signal, one uses the variance of the components as features
to classify the signal as belonging to one of the classes. For details,the reader is
referred to [8].

2.4 Data Processing for Peripheral Physiological Signals

The following peripheral nervous system signals were recorded: galvanic skin
response (GSR), respiration amplitude, skin temperature, electrocardiogram,
blood volume by plethysmograph, electromyograms of Zygomaticusand Trapez-
ius muscles, and electrooculogram (EOG). GSR provides a measure of the re-
sistance of the skin by positioning two electrodes on the distal phalanges of the
middle and index �ngers. This resistance decreases due to an increase of perspi-
ration, which usually occurs when one is experimenting emotions suchas stress
or surprise. Moreover, Lang et al. discovered that the mean valueof the GSR is
related to the level of arousal [9].

A plethysmograph measures blood volume in the participant's thumb.This
measurement can also be used to compute heart rate (HR) by identi�cation of
local maxima (i.e. heart beats), inter-beat periods, and heart rate variability
(HRV). Blood pressure and heart rate variability correlate with emotions, since
stress can increase blood pressure. Pleasantness of stimuli can increase peak
heart rate response [9]. In addition to the HR and HRV features, spectral features
derived from HRV were shown to be a useful feature in emotion assessment [13].

Skin temperature was also recorded since it changes in di�erent emotional
states. The respiration amplitude was measured by tying a respiration belt
around the abdomen of the participant. Slow respiration is linked to relaxation
while irregular rhythm, quick variations, and cessation of respiration correspond
to more aroused emotions like anger or fear.

Regarding the EMG signals, the Trapezius muscles (neck) activity was recor-
ded to investigate the possible head movements during music listening. The
activity of the Zygomaticus major was also monitored, since this muscle is active
when the user is laughing or smiling. Most of the power in the spectrumof an
EMG during muscle contraction is in the frequency range between 4 to 40 Hz.
Thus, the muscle activity features were obtained from the energyof EMG signals
in this frequency range for the di�erent muscles. The rate of eye blinking is
another feature, which is correlated with anxiety. Eye-blinking a�ects the EOG
signal and results in easily detectable peaks in that signal.

In total 53 features were extracted from peripheral physiological responses
based on the proposed features in the literature [2, 18]. A summaryof the features
is given below.
GSR: Mean and standard deviation of skin resistance, mean of derivative, mean
of absolute of derivative, mean of derivative for negative values only (mean de-
crease rate during decay time), proportion of negative samples in the derivative
vs. all samples, spectral power in the bands (0-0.1Hz, 0.1-0.2Hz, 0.2-0.3Hz, 0.3-
0.4Hz)
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Blood volume pressure: Mean and standard deviation of HR and its deriva-
tive, HRV, mean and standard deviation of inter beat intervals, energy ratio
between the frequency bands 0.04-0.15Hz and 0.15-0.5Hz, spectral power in
the bands (0.1-0.2Hz, 0.2-0.3Hz, 0.3-0.4Hz), low (0.01-0.08Hz), medium (0.08-
0.15Hz) and high (0.15-0.5Hz) frequency components of HRV powerspectrum.
Respiration: Mean respiration signal, mean of derivative (variation of the res-
piration signal), standard deviation, range or greatest breath, breathing rate,
spectral power in the bands (0-0.1Hz, 0.1-0.2Hz, 0.2-0.3Hz, 0.3-0.4Hz)
Skin Temperature: Range, mean, standard deviation, mean of its derivative,
spectral power in the bands (0-0.1Hz, 0.1-0.2Hz, 0.2-0.3Hz, 0.3-0.4Hz)
EMG and EOG: Eye blinking rate, energy, mean and variance of the signal.

Normalization was applied on each feature separately by subtracting the
minimum and dividing by the di�erence between the maximum and the minimum
value of the features. The normalization parameters, maximum andminimum
values, were obtained from the training set.

3 Results

In this section, we present the results of the methods introducedearlier. First, an
analysis on the validity of the self-assessment of participants is presented. Next,
we investigate the average correlations between these ratings and observed EEG
frequency power. Finally, the results of single trial classi�cation using EEG and
peripheral physiological signals are presented.

3.1 Analysis of Subjective Ratings

To validate the a�ect induction approach and identify possible threats to relia-
bility (e.g. due to extreme habituation or fatigue), we computed the (Spearman)
correlations between the rating scales and the stimulus order.

Table 1. The correlations between the rating scales of valence, arousal, like/dislike
and the order of the presentation of stimuli. Signi�cant cor relations are indicated by
stars.

Valence Arousal Like/Dislike Order

Valence 1 0.46* 0.66* -0.24
Arousal - 1 0.56* -0.17
Like/Dislike - - 1 -0.18
Order - - - 1

The correlation analysis revealed a medium correlation between the ratings
on the valence, arousal, and like/dislike scales (Table 1). That could be due to
the fact that people liked positive emotions evoking and arousing clipsmore.
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Despite the correlations between valence, arousal, and like/dislike,the results
suggest that subjects did di�erentiate between these concepts.

Furthermore, no signi�cant correlation between stimulus order and the rat-
ings was observed. This indicates that any e�ects of habituation and fatigue were
kept to an acceptable minimum.

3.2 Correlations Between EEG Frequencies and Ratings
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Fig. 3. The plots show the mean correlation coe�cients over all 6 sub jects for speci�c
narrow frequency bands. Electrodes showing highly signi�c ant ( p < 0:01) di�erences
are highlighted.

The results of the correlation analysis between participant ratingsand EEG
frequency power suggest that brain activity from di�erent regions of the scalp
can be related to the subjective emotional states of the participants along the
axes of arousal and valence, and to their preference for the clips(Fig. 3). The
large number of tests computed may lead to an increase in false positives. To
attenuate this risk, only highly signi�cant ( p < 0:01) correlations are discussed.

For valence a strong positive correlation with left parietal-occipital power in
the theta band, and a negative correlation with right posterior alpha power is
observed. This pattern of increasing low frequency band and decreasing alpha
band power can be understood in the context of emotion regulationand increased
sensory processing [6]. Furthermore, a left central increase anda right frontal
decrease in high beta band power is visible with higher valence. Especially, the
frontal response might indicate a relative deactivation of cortical regions related
to negative mental states [3]. Additionally, a positive correlation with right pos-
terior gamma is observed, possibly hinting again to a role of right posterior
cortices in emotion-related sensory processes.
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For states of higher arousal, a robust decrease of right posterior alpha power
can be observed. This is consistent with the role of (posterior) alpha in sensory
processes, and the role of the right hemisphere in a�ective processing [3].

Like/dislike shows a similar positive correlation in the theta range and neg-
ative correlation in the alpha range as observed for valence. This is presumably
due to the correlations seen between the valence and like/dislike ratings. Inter-
estingly, a decrease of beta power with higher liking is observed overthe central
cortical region, known to be involved in imaginary and real (foot) movement
[16].

3.3 EEG Single Trial Classi�cation

In both the EEG and peripheral physiological signal single trial classi�cation, the
same ground truth labels and classi�cation methods were used. Three di�erent
targets were classi�ed: the like/dislike, arousal and valence ratings. We have
posed the problem as a two-class classi�cation problem. The given ratings were
thresholded (at the centre of the 9-point rating scale) into two classes for each
classi�cation target. For the arousal and general rating targets, we had to exclude
participant 1, as this participant assigned 17/20 videos a high arousal rating
and 19/20 videos a high like/dislike rating. As a result, we did not have enough
samples to train the classi�er for low arousal and low like/dislike rating for this
participant. All other participants rated the videos in a more balanced manner.
To improve statistical accuracy of the classi�cation, each trial (video) was split
into ten 12-second segments. Testing was done using leave-one-trial-out cross-
validation. A linear support vector machine (SVM) was used for classi�cation.

As mentioned before, in the EEG single trial classi�cation, we compared two
di�erent feature extraction methods for feature extraction fr om the EEG signals,
PSD and CSP. With the PSD method, we tested several options for the width
of the frequency bands (1,2,3,4,5 and 10Hz). Only the results of thebest scoring
bandwidth are reported. The results of each algorithm and each classi�cation
target are given in Table 2 and discussed below.

Table 2. Single trial two-class classi�cation rates for the valence , arousal and
like/dislike targets.

Target Method P1 P2 P3 P4 P5 P6 Avg.

Valence
PSD (3Hz bands) 59.0 45.0 63.0 51.5 58.5 76.0 58.8
CSP (2 comp.) 60.0 38.5 54.0 60.0 65.0 75.0 58.8

Arousal
PSD (10Hz bands) | 19.5 67.0 63.5 56.5 53.5 51.9
CSP (2 comp.) | 44.5 55.0 65.0 59.5 54.5 55.7

Like/Dislike
PSD (4Hz bands) | 54.0 50.5 57.5 32.5 52.5 49.4
CSP (4 comp.) | 53.0 54.0 63.5 17.0 56.5 48.8
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Valence The performance for valence prediction is better than for arousal pre-
diction. For CSP using two components gave the best result. The best result for
the PSD method was obtained using 3Hz frequency bands (with 50% overlap).
Overall, both algorithms lead to the same classi�cation accuracy (58.8%). Par-
ticipant 2 scores badly, when excluding this participant, CSP scores62.8% vs.
61.6% for the PSD method.
Arousal For CSP two components were used and for PSD 10Hz frequency bands.
Overall, CSP outperforms the PSD method (55.7% vs. 51.9%). For participant
2, the result is very low for both methods. When excluding this participant, CSP
has a mean classi�cation rate of 58.5% vs. 60.0% for PSD.
Like/dislike For CSP four components were used and for PSD 4Hz frequency
bands. The PSD method obtains the highest classi�cation accuracy, though the
di�erence is minimal (49.4% vs. 48.8%). Participant 5 had a very low accuracy
for both methods. When excluding this participant, CSP outperforms the PSD
method (56.8% vs. 53.6%). We are currently investigating the possible causes
and remedies of the surprisingly low scores for some of the participants.

3.4 Peripheral Physiological Signals Single Trial Classi� cation

As mentioned earlier, 53 features were extracted from each physiological signal
sample. The classi�cation scheme remains the same as for EEG-based classi�ca-
tion. The fast correlation based �lter (FCBF) feature selection method was used
to select the most discriminating features at each iteration of cross-validation[20].

Table 3. Classi�cation rates using an SVM classi�er and FCBF feature selection

Target P1 P2 P3 P4 P5 P6 Avg.

Valence 40.5 37.0 78.5 40.5 65.5 63.0 54.2
Arousal | 44.5 85.5 55.0 49.0 60.5 58.9
Like/Dislike | 73.0 69.0 55.5 32.0 60.0 57.9

The classi�cation rates for valence, arousal and like/dislike are given in Table
3. On average, valence results using peripheral physiological signals are worse
than like/dislike and arousal. Arousal relates most to peripheral nervous sys-
tem activities; therefore, the best classi�cation results were obtained for arousal
classi�cation. All the results of participant 3 are shown to be amongst the best
obtained results. This may be due to a better self-assessment forthis participant.

4 Conclusion

In this paper an experiment was conducted to automatically recognize emotions
induced by watching music video clips. Six subjects were asked to watch 20
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music videos each and rate them according to perceived levels of valence, arousal
and general like/dislike. As they watched the videos, their EEG and peripheral
physiological signals were recorded.

On average, frequency power over several cortical regions correlated to the
subjective state and preferences of the participants, especiallyin the lower fre-
quencies (i.e. in the theta and alpha bands). Similar �ndings have beenreported
in the literature on neurophysiological a�ective responses.

For single trial classi�cation, We posed the a�ect recognition problem as
a two-class classi�cation problem, classifying the videos as having lowor high
arousal, valence and like/dislike. We presented results for classi�cation of both
EEG and peripheral physiological signals. For EEG classi�cation, the average
(maximum) classi�cation rates are 55.7% (67%) for arousal, 58.8% (76%) for
valence and 49.4% (63.5%) for like/dislike ratings. Using peripheral physiological
responses, the average (maximum) classi�cation rates are 58.9% (85.5%) for
arousal, 54.2% (78.5%) for valence, and 57.9% (73%) for like/dislike rating. Due
to the low number of samples we could not validate the signi�cance of our results.
We are currently repeating the experiment with 20-30 subjects and 40 samples
each in order to gain more statistically valid results.

The classi�cation based on arousal and valence values and binary threshold-
ing proved to be rather challenging. The use of music videos may lead to mixed
emotional messages from the video and audio modalities. Furthermore the a�ect-
related responses could be speci�c to the modality the a�ect was induced by.
These e�ects may complicate any classi�cation. We intend to investigate the
inuence of the di�erent modalities in our next study.

The results of the single trial classi�cation show that there is a relatively large
amount of information in both EEG and peripheral physiological signals regard-
ing users' emotional states. In future work, we aim to create a more extensive
video clip database so that they can elicit stronger and more diverseemotions
in participants and thus increase the accuracy of the emotion recognition. Fur-
thermore, we plan to fuse the peripheral physiological and EEG modalities in
order to better exploit the relative strengths of each modality.
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