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ABSTRACT

Spatio-temporal interest region detectors can be used in the

analysis of video to determine sparse, informative regions as

candidates for feature extraction. In this paper we compare

existing detectors and introduce the new FAST-3D detector,

loosely based on the FAST spatial interest region detector.

We compare the invariance of detectors to rotation, scale and

compression by measuring the similarity between detected in-

terest regions in original and transformed versions of videos.

We measure both the repeatibility and introduce a new sim-

ilarity measure based on mutual information. The FAST-3D

detector is shown to be on par with the other detectors, while

showing a significant increase in speed.

1. INTRODUCTION

In the area of event detection and recognition from video se-

quences, an emerging technique is the use of spatio-temporal

interest region detection. Locations of interest are those that

have a high descriptiveness, can be reliably and repeatedly

detected in different instantiations of the same event and are

largely invariant to common transformations and noise in the

video. Extracting features only at spatio-temporal interest re-

gions allow for a compact, sparse representation of the image

sequence, whilst retaining the most significant parts.

A wide range of detectors for static images exists (e.g.

SIFT, SURF, FAST, MSER, Salient regions, Harris corners,

etc.) and several comparisons are available (i.e.[1, 2]). How-

ever, for spatio-temporal interest region detection the field is

much smaller, only a few works exist and no comprehensive

performance evaluation of the detectors exists. Also, one of

the drawbacks of current methods is their computational com-

plexity. Here, we extend the spatial FAST detector into the

temporal domain and evaluate it and other detectors in terms

of both speed and invariance to common transformations of

the video. The FAST-3D detector shows a performance on

par with the state of the art, yet on average it performs signifi-

cantly faster. We compare the FAST-3D detector against four

other detectors, which are described briefly below.

The detector of Oikonomopoulos et al. [5] is based on

the idea of a saliency metric based on information content.

At each pixel, cylindrical neighborhoods are considered, a

saliency metric that is defined in terms of the signal (e.g. in-

tensity) entropy is computed for each neighborhood and the

maxima that exceed a threshold are selected as interest re-

gions. The authors also use a clustering of the salient regions

to reduce the number of regions and gain more stable regions

in the process. Both the unclustered and clustered regions are

used in our experiments.

The Laptev and Lindeberg [6] detector is based on the

spatial Harris interest point operator. For a given video se-

quence, a linear scale-space representation L is derived by

convolution with a separable Gaussian kernel. Then, at each

pixel a second-moment matrix M is constructed composed

of spatial and temporal derivatives from L averaged with a

Gaussian weighting function. Interest points are detected in

regions where M has large eigenvalues.

In [7], Dollar et al. propose a detector that is tuned to react

to periodic motions as well as spatio-temporal corners. Their

interest point operator takes the form R = (I ∗ g ∗ hev)2 +
(I ∗G∗hod)

2, where g is a spatial Gaussian smoothing kernel

and hev and hod are a temporal quadrature pair of 1D gabor

filters. Interest points are defined to lie on the maxima of the

given response function.

Cheung and Hamarneh [8] proposed N-SIFT, a temporal

extension of the well known 2D SIFT technique. A Gaussian

scale-space representation is constructed and a DoG (Differ-

ence of Gaussians) image pyramid is derived from it. At each

level of the DoG pyramid, the local extrema are found by

comparing each voxel of the DoG image against the neigh-

bouring voxels as well as the voxel in the scales above and

below (and their neighbouring voxels). A threshold is set on

the extrema to get the final set of interest regions.

The rest of the paper is organized as follows: in section

2 the FAST-3D detector is described in detail. Section 3 de-

scribes the experiment setup and section 4 reports the results,

while section 5 concludes the paper.

2. THE FAST-3D INTEREST REGION DETECTOR

The Feature Accelerated Segment Test (FAST) spatial interest

point operator was proposed by Rosten & Drummond [3], is

designed for use in a real-time tracking application (it’s used

in [3] to periodically update the tracked position of a prede-

fined model to the image) and operates on a simple principle.



For each pixel (x, y) in an image with intensity ix,y and given

a threshold τ , a circle of 16 surrounding pixels is considered

and a corner is detected when 12 contiguous pixels have in-

tensity values either all above ix,y + τ (a positive corner) or

all below ix,y − τ (a negative corner). The detection can be

sped up by initially only testing the 1st, 5th, 9th and 13th pixel

since at least three of these pixels must meet the criterion in

order for a corner to exist. Thus, pixels failing the test are

immediately rejected.

Our FAST-3D spatio-temporal detector is inspired by the

FAST detector. Instead of using a circle around each pixel

(x, y, t), we consider the set C of the 26 directly neighbour-

ing pixels to (x, y, t) in a 3D space-time neghborhood. As in

FAST, we detect a corner when a proportion of the surround-

ing pixels have intensities that are either all above ix,y,t + τ
(a “positive” corner) or are all below ix,y,t − τ (a “negative”

corner). Requiring that pixels matching the criterion are con-

tiguous does not work well in 3D, since very sharp corners

rarely occur. Also, it is much more complex to test whether

the pixels are in fact contiguous. Thus, in the 3D-case we de-

tect a corner when a subset Csub of at least 50% of the pixels

in C passes the criterion for a negative or positive corner.

The rejection scheme of testing four pixels on the circle in

FAST does not translate directly into 3D. We do however pro-

pose a simple rejection scheme by requiring a change in both

the temporal and the spatial domain. The rejection scheme

for a single pixel (x, y, t) in the case of a positive corner is:

1. (ix,y,t−1 or ix,y,t+1) > ix,y,t + τ , else reject.

2. (ix−1,y,t, ix+1,y,t, ix,y−1,t or ix,y+1,t) > ix,y,t+τ , else
reject.

3. (at least 13 pixels in C) > ix,y,t + τ , else reject.

This set of tests is also run for negative corners. While the

first test requires a temporal change, the second test demands

a spatial change. When a pixel passes all three tests, a spatio-

temporal interest region is detected.

In order to apply the detector at scales s we construct a

scale-space representation. At each scale s, we set brightness
value of a block to be equal to the average brightness level in

the 27 adjacent blocks of dimensions 2sx+1, 2sy+1, 2st+1.
The calculation of these average brightness levels for each

pixel and for each scale is computationally quite expensive.

Here, we build on the idea of integral images [4] and construct

an integral volume V once, fromwhich the average levels can

be extracted efficiently for each pixel scale. In this way, we

can use the same fast calculation method described earlier for

detecting regions of scale 1.

Let ix,y,t denote the intensity values of pixels in the video

sequence, then the integral volume is defined as:

Vx,y,t =
x−1∑

p=0

y−1∑

q=0

t−1∑

r=0

ip,q,r (1)

Fig. 1. Example of detected spatio-temporal interest regions.

The video shows a person clapping his hands above his head.

Interest regions detected by FAST-3D are shown in red.

It can be calculated in one pass over the original volume by

using recursion with 8 array references per pixel:

Vx+1,y+1,t+1 = ix,y,t + Vx,y,t

− Vx+1,y,t − Vx,y+1,t − Vx,y,t+1 (2)

+ Vx,y+1,t+1 + Vx+1,y,t+1 + Vx+1,y+1,t+1

Having V , we can extract a volume As for each scale s, with
each element Asx,y,t the average of the block of dimensions

2sx + 1, 2sy + 1, 2st + 1 around pixel (x, y, t). It can be

constructed efficiently from I , again using 8 array references

per pixel. Let x+ denote x + ⌊sx/2⌋, x− denote x − ⌊sx/2⌋
and similarly for y and t, then:

Asx,y,t = s−1
x s−1

y s−1
t (Ix+,y+,t+ + Ix+,y−,t−

+Ix−,y+,t− + Ix−,y−,t+ − Ix−,y−,t−

−Ix−,y+,t+ − Ix+,y−,t+ − Ix+,y+,t−) (3)

If we have n different scales S = s1 . . . sn to detect re-

gions for, this gives a total of 8n+8 array references to calcu-

late the average brightness level for a pixel and its 26 neigh-

bours at all scales. Without the described technique, the same

calculation would take
∑n

n′=1
(2n′ + 1)3 array references.

3. EXPERIMENTS

36 videos from the KTH [9] dataset were used in this ex-

periment, ranging in duration between 9.6 and 29.3 seconds

at a resolution of 160x120 pixels. Videos were transformed

by zooming or rotating them and regions were detected both

in the original and the transformed version. The inverse of

the transformation was applied to the regions to get the lo-

cation and scale corresponding to the regions detected in the



original videos. In addition to these transformations, we also

tested the degradation of performance when applyingMPEG-

compression. For each detector, regions were detected in

scales ranging from 3 to 45 pixels across in all dimensions.

All detectors were run with parameters set to the authors’ de-

faults. All detected regions were approximated by spheroids

to facilitate an easy comparison.

3.1. Performance measures

Two different measures were used to estimate the consistency

at which sets of regions are detected in original and trans-

formed videos.

Repeatability as a measure of the performance of spatial

interest region detector is proposed in [1]. Two regions a and

b with regions Ra and Rb respectively, are deemed a match if

the ratio between the union and intersection is large enough,

as is detailed in the following equation: Y

1 −
Ra ∩ Rb

Ra ∪ Rb

< ǫ (4)

Here, ǫ is a threshold which is set at 0.4 by the authors. Then,
the repeatibility is defined as the ratio between the number of

matches and the smaller of the number of regions detected in

each of the two images. In the spatio-temporal case, we take

the same approach, calculating the union and intersection nu-

merically by simply counting the number of pixels. However,

the repeatability measure suffers from some drawbacks. It

favours dense detectors, since as the number of detected re-

gions increases, so does the likelihood that some regions will

match by accident. Furthermore, in certain cases a high re-

peatability value can occur for quite different sets of regions,

e.g. when one set of regions is a subset of the other.

To overcome some of these problems, we introduce a mea-

sure on an information-theoretical basis as an alternative to

the repeatibility measure. For each set of regions, we con-

sider the spatiotemporal coverage by regions of the sequence

as a 3D pdf and then consider the mutual information be-

tween the two pdfs, that is the amount of information that

one of them conveys about the other. First, we estimate a

’coverage matrix’ analogous to a probability density func-

tion that indicates for each pixel to what degree it is cov-

ered by interest regions. This is done by convoluting the

center of each interest region with a 3D Gaussian for which

σx = sx · 2, σy = sy · 2, σz = sz · 2 where s is the detected

scale of the region. This gives us a coverage matrix Ca for

the original and Cb for the transformed video. Our measure is

then a normalised variant of mutual information also known

as symmetric uncertainty between these matrices:

2 ·
H(Ca) + H(Cb) − H(Ca, Cb)

H(Ca) + H(Cb)
(5)

Detector Avg. FPS Std Lang.

FAST-3D 1.6442 0.6002 Matlab

Dollar et al. 1.1000 0.3129 Matlab

Cheung and Hamarneh 0.3734 4.4650 C++

Oikonomopoulos et al. [5] 0.2803 0.6052 Matlab

[5] + clustering 0.2441 0.4943 Matlab

Laptev and Lindeberg 0.0752 0.0331 Matlab

Table 1. Table displaying the average speed of detection over

all videos used in the experiment. Shown are the average

framerate and its standard deviation.

4. RESULTS

Figure 2 shows the average performance (consistency in re-

gion localisation) for zoomed, rotated and compressed videos,

respectively. Both in repeatability and mutual information

Oikonomopoulos et al. and FAST-3D tend to score the high-

est. The clustering in the detector of Oikonomopoulos et al.,

while giving very sparse results, leads to a significant drop in

performance. All detectors seem to be reasonably invariant

to rotation and zoom, although the repeatability in the case of

zooming is quite variable. For MPEG-compression, it seems

that except for the FAST-3D and Oikonomopoulos et al. de-

tectors, there is not much invariance to this distortion.

Finally, Table 1 depicts the speeds measured for each of

the detectors. The FAST-3D detector appears to run about

50% faster than the second-fastest, (i.e. Dollar et al), and

more than 200 times faster than the slowest detector in the

test. While the reported execution times depend on the im-

plementation, we note that we have used the implementations

provided by the authors (only modifying the scales that are

detected for a fair comparison), and all detectors are imple-

mented in Matlab, except for the Cheung and Hamarneh de-

tector, which is in C++.

5. CONCLUSION

In this paper we introduced the FAST-3D detector and showed

that it detects spatiotemporal regions consistently when videos

are transformed by zoom, rotation or MPEG compresssion.

While performing on par with other state-of-the-art detectors,

it runs significantly faster. We also introduced a new measure

of region consistency based on mutual information that has an

information-theoretical grounding. Further work will include

testing the detectors in this paper with different descriptors on

a realistic dataset to gain insight into the quality of detected

regions and a thorough complexity analysis of the detectors.
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Fig. 2. performance of detectors. The top plot shows the performance as functions of zoom, rotation and compression bitrate.

7. REFERENCES

[1] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L.V. Gool, “A Com-

parison of Affine Region Detectors,” International Journal of

Computer Vision, vol. 65, no. 1, pp. 43–72, 2005.

[2] N. Sebe and M.S. Lew, “Comparing salient point detectors,”

Pattern Recognition Letters, vol. 24, no. 1-3, pp. 89–96, 2003.

[3] Edward Rosten and Tom Drummond, “Fusing points and lines

for high performance tracking.,” in Proc. Int. Conf. Computer

Vision, October 2005, vol. 2, pp. 1508–1511.

[4] P. Viola and M.J. Jones, “Robust Real-Time Face Detection,”

International Journal of Computer Vision, vol. 57, no. 2, pp.

137–154, 2004.

[5] A. Oikonomopoulos, I. Patras, and M. Pantic, “Spatiotemporal

salient points for visual recognition of human actions,” IEEE

Trans. Systems, Man and Cybernetics, vol. 36, no. 3, pp. 710–

719, 2006.

[6] I. Laptev and T. Lindeberg, “Space-time interest points,” in

Proc. Int. Conf. Computer Vision, 2003, vol. 1, pp. 432–439.

[7] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior

recognition via sparse spatio-temporal features,” in IEEE Int’l

Workshop VS-PETS, 2005, pp. 65–72.

[8] W. Cheung and G. Hamarneh, “n-sift: n-dimensional scale in-

variant feature transform for matching medical images,” in IEEE

Int’l Symposium on Biomedical Imaging, 2007, pp. 720–723.

[9] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human

actions: a local svm approach,” in Proceedings, International

Conference on Pattern Recognition, 2004, vol. 3, pp. 32–36.


